Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.885
Filtrar
1.
Drug Des Devel Ther ; 18: 1247-1262, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645988

RESUMO

Purpose: Sinomenine hydrochloride (SH) is used to treat chronic inflammatory diseases such as rheumatoid arthritis and may also be efficacious against Immunoglobulin A nephropathy (IgAN). However, no trial has investigated the molecular mechanism of SH on IgAN. Therefore, this study aims to investigate the effect and mechanism of SH on IgAN. Methods: The pathological changes and IgA and C3 depositions in the kidney of an IgAN rat model were detected by periodic acid-Schiff (PAS) and direct immunofluorescence staining. After extracting T and B cells using immunomagnetic beads, we assessed their purity, cell cycle phase, and apoptosis stage through flow cytometry. Furthermore, we quantified cell cycle-related and apoptosis-associated proteins by Western blotting. Results: SH reduced IgA and C3 depositions in stage 4 IgAN, thereby decreasing inflammatory cellular infiltration and mesangial injury in an IgAN model induced using heteroproteins. Furthermore, SH arrested the cell cycle of lymphocytes T and B from the spleen of IgAN rats. Regarding the mechanism, our results demonstrated that SH regulated the Cyclin D1 and Cyclin E1 protein levels for arresting the cell cycle and it also regulated Bax and Bcl-2 protein levels, thus increasing Cleaved caspase-3 protein levels in Jurkat T and Ramos B cells. Conclusion: SH exerts a dual regulation on the cell cycle and apoptosis of T and B cells by controlling cell cycle-related and apoptosis-associated proteins; it also reduces inflammatory cellular infiltration and mesangial proliferation. These are the major mechanisms of SH in IgAN.


Assuntos
Apoptose , Linfócitos B , Proliferação de Células , Glomerulonefrite por IGA , Morfinanos , Linfócitos T , Morfinanos/farmacologia , Morfinanos/química , Glomerulonefrite por IGA/tratamento farmacológico , Glomerulonefrite por IGA/patologia , Animais , Apoptose/efeitos dos fármacos , Ratos , Proliferação de Células/efeitos dos fármacos , Linfócitos B/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Masculino , Relação Dose-Resposta a Droga , Modelos Animais de Doenças , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Substâncias Protetoras/farmacologia , Substâncias Protetoras/química , Humanos , Células Cultivadas
2.
N Engl J Med ; 390(7): 623-629, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38354141

RESUMO

Wolman's disease, a severe form of lysosomal acid lipase deficiency, leads to pathologic lipid accumulation in the liver and gut that, without treatment, is fatal in infancy. Although continued enzyme-replacement therapy (ERT) in combination with dietary fat restriction prolongs life, its therapeutic effect may wane over time. Allogeneic hematopoietic stem-cell transplantation (HSCT) offers a more definitive solution but carries a high risk of death. Here we describe an infant with Wolman's disease who received high-dose ERT, together with dietary fat restriction and rituximab-based B-cell depletion, as a bridge to early HSCT. At 32 months, the infant was independent of ERT and disease-free, with 100% donor chimerism in the peripheral blood.


Assuntos
Gorduras na Dieta , Terapia de Reposição de Enzimas , Transplante de Células-Tronco Hematopoéticas , Fatores Imunológicos , Rituximab , Doença de Wolman , Humanos , Lactente , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Quimerismo , Gorduras na Dieta/efeitos adversos , Terapia de Reposição de Enzimas/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Fatores Imunológicos/uso terapêutico , Rituximab/uso terapêutico , Transplante Homólogo , Doença de Wolman/dietoterapia , Doença de Wolman/tratamento farmacológico , Doença de Wolman/imunologia , Doença de Wolman/terapia
3.
Science ; 383(6684): eadg0564, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38359115

RESUMO

Influenza viruses escape immunity owing to rapid antigenic evolution, which requires vaccination strategies that allow for broadly protective antibody responses. We found that the lipid globotriaosylceramide (Gb3) expressed on germinal center (GC) B cells is essential for the production of high-affinity antibodies. Mechanistically, Gb3 bound and disengaged CD19 from its chaperone CD81, permitting CD19 to translocate to the B cell receptor complex to trigger signaling. Moreover, Gb3 regulated major histocompatibility complex class II expression to increase diversity of T follicular helper and GC B cells reactive with subdominant epitopes. In influenza infection, elevating Gb3, either endogenously or exogenously, promoted broadly reactive antibody responses and cross-protection. These data demonstrate that Gb3 determines the affinity and breadth of B cell immunity and has potential as a vaccine adjuvant.


Assuntos
Anticorpos Antivirais , Linfócitos B , Centro Germinativo , Infecções por Orthomyxoviridae , Orthomyxoviridae , Triexosilceramidas , Formação de Anticorpos , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Centro Germinativo/efeitos dos fármacos , Centro Germinativo/imunologia , Triexosilceramidas/metabolismo , Triexosilceramidas/farmacologia , Animais , Camundongos , Camundongos Knockout , Humanos , Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/imunologia , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/imunologia
4.
Elife ; 122023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38127423

RESUMO

Germline CTLA-4 deficiency causes severe autoimmune diseases characterized by dysregulation of Foxp3+ Tregs, hyper-activation of effector memory T cells, and variable forms autoimmune cytopenia including gradual loss of B cells. Cancer patients with severe immune-related adverse events (irAE) after receiving anti-CTLA-4/PD-1 combination immunotherapy also have markedly reduced peripheral B cells. The immunological basis for B cell loss remains unexplained. Here, we probe the decline of B cells in human CTLA-4 knock-in mice by using anti-human CTLA-4 antibody Ipilimumab conjugated to a drug payload emtansine (Anti-CTLA-4 ADC). The anti-CTLA-4 ADC-treated mice have T cell hyper-proliferation and their differentiation into effector cells which results in B cell depletion. B cell depletion is mediated by both CD4 and CD8 T cells and at least partially rescued by anti-TNF-alpha antibody. These data revealed an unexpected antagonism between T and B cells and the importance of regulatory T cells in preserving B cells.


Assuntos
Abatacepte , Linfócitos B , Linfócitos T Reguladores , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Abatacepte/farmacologia , Animais , Camundongos , Antígeno CTLA-4/genética , Antígeno CTLA-4/imunologia , Depleção Linfocítica , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Apoptose/efeitos dos fármacos , Imunoglobulinas/sangue , Imunoglobulinas/imunologia , Células CHO , Cricetulus , Camundongos Endogâmicos C57BL , Masculino , Feminino
5.
EMBO J ; 42(24): e114462, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37934086

RESUMO

Mammalian cells repress expression of repetitive genomic sequences by forming heterochromatin. However, the consequences of ectopic repeat expression remain unclear. Here we demonstrate that inhibitors of EZH2, the catalytic subunit of the Polycomb repressive complex 2 (PRC2), stimulate repeat misexpression and cell death in resting splenic B cells. B cells are uniquely sensitive to these agents because they exhibit high levels of histone H3 lysine 27 trimethylation (H3K27me3) and correspondingly low DNA methylation at repeat elements. We generated a pattern recognition receptor loss-of-function mouse model, called RIC, with mutations in Rigi (encoding for RIG-I), Ifih1 (MDA5), and Cgas. In both wildtype and RIC mutant B cells, EZH2 inhibition caused loss of H3K27me3 at repetitive elements and upregulated their expression. However, NF-κB-dependent expression of inflammatory chemokines and subsequent cell death was suppressed by the RIC mutations. We further show that inhibition of EZH2 in cancer cells requires the same pattern recognition receptors to activate an interferon response. Together, the results reveal chemokine expression induced by EZH2 inhibitors in B cells as a novel inflammatory response to genomic repeat expression. Given the overlap of genes induced by EZH2 inhibitors and Epstein-Barr virus infection, this response can be described as a form of viral mimicry.


Assuntos
Linfócitos B , Proteína Potenciadora do Homólogo 2 de Zeste , Infecções por Vírus Epstein-Barr , Animais , Camundongos , Metilação de DNA , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Infecções por Vírus Epstein-Barr/genética , Herpesvirus Humano 4/genética , Histonas/metabolismo , Linfócitos B/efeitos dos fármacos , Sequências Repetitivas de Ácido Nucleico
6.
Toxicology ; 492: 153532, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37141935

RESUMO

Thallium (Tl) is a high-priority toxic metal that poses a severe threat to human health. The toxicity characteristics induced by Tl have been partially discussed. However, the immunotoxic effects of Tl exposure have remained largely unexplored. Our findings demonstrated that 50 ppm of Tl exposure for one week induced severe weight loss in mice, which was accompanied by appetite suppression. Moreover, although Tl exposure did not induce significant pathological damage to skeletal muscle and bone, Tl inhibited the expression of B cell development-related genes in the bone marrow. Additionally, Tl exposure increased B cell apoptosis and reduced its generation in the bone marrow. Analysis of B cells in the blood indicated that the percentage of B-2 cells decreased significantly, whereas B-2 cell proportions in the spleen did not. The percentage of CD4+ T cells in the thymus increased significantly, and the proportion of CD8+ T cells did not. Furthermore, although the proportion of the total CD4+ and CD8+ T cells was not significantly altered in the blood and spleen, Tl exposure promoted the migration of naïve CD4+ T cells and recent thymic emigrants (RTEs) from the thymus to the spleen. These results suggest that Tl exposure can affect B and T cell generation and migration, which provides new evidence for Tl-induced immunotoxicity.


Assuntos
Linfócitos B , Linfócitos T , Tálio , Tálio/toxicidade , Linfócitos B/citologia , Linfócitos B/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Animais , Camundongos , Movimento Celular/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Timo/citologia , Timo/efeitos dos fármacos , Medula Óssea/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos
7.
Front Immunol ; 14: 1004795, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033984

RESUMO

The immune system plays a significant role in multiple sclerosis. While MS was historically thought to be T cell-mediated, multiple pieces of evidence now support the view that B cells are essential players in multiple sclerosis pathogenic processes. High-efficacy disease-modifying therapies that target the immune system have emerged over the past two decades. Anti-CD20 monoclonal antibodies selectively deplete CD20+ B and CD20+ T cells and efficiently suppress inflammatory disease activity. These monotherapies prevent relapses, reduce new or active magnetic resonance imaging brain lesions, and lessen disability progression in patients with relapsing multiple sclerosis. Rituximab, ocrelizumab, and ofatumumab are currently used in clinical practice, while phase III clinical trials for ublituximab have been recently completed. In this review, we compare the four anti-CD20 antibodies in terms of their mechanisms of action, routes of administration, immunological targets, and pharmacokinetic properties. A deeper understanding of the individual properties of these molecules in relation to their efficacy and safety profiles is critical for their use in clinical practice.


Assuntos
Antígenos CD20 , Fatores Imunológicos , Esclerose Múltipla , Humanos , Antígenos CD20/imunologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/imunologia , Recidiva , Rituximab/uso terapêutico , Rituximab/farmacologia , Fatores Imunológicos/farmacologia , Fatores Imunológicos/uso terapêutico , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
8.
Science ; 380(6640): 93-101, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-36926954

RESUMO

Although most cancer drugs modulate the activities of cellular pathways by changing posttranslational modifications (PTMs), little is known regarding the extent and the time- and dose-response characteristics of drug-regulated PTMs. In this work, we introduce a proteomic assay called decryptM that quantifies drug-PTM modulation for thousands of PTMs in cells to shed light on target engagement and drug mechanism of action. Examples range from detecting DNA damage by chemotherapeutics, to identifying drug-specific PTM signatures of kinase inhibitors, to demonstrating that rituximab kills CD20-positive B cells by overactivating B cell receptor signaling. DecryptM profiling of 31 cancer drugs in 13 cell lines demonstrates the broad applicability of the approach. The resulting 1.8 million dose-response curves are provided as an interactive molecular resource in ProteomicsDB.


Assuntos
Antineoplásicos , Apoptose , Processamento de Proteína Pós-Traducional , Proteômica , Antígenos CD20/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linfócitos B/efeitos dos fármacos , Linhagem Celular Tumoral , Dano ao DNA , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteômica/métodos , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais , Humanos
9.
BMC Complement Med Ther ; 23(1): 62, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36810081

RESUMO

BACKGROUND: Systemic sclerosis (SSc; also known as "scleroderma") is an autoimmune disorder characterized by extensive fibrosis, vascular changes, and immunologic dysregulation. Baicalein (phenolic flavonoid derived from Scutellaria baicalensis Georgi) has been used to treat the pathological processes of various fibrotic and inflammatory diseases. In this study, we investigated the effect of baicalein on the major pathologic characteristics of SSc: fibrosis, B-cell abnormalities, and inflammation. METHODS: The effect of baicalein on collagen accumulation and expression of fibrogenic markers in human dermal fibroblasts were analyzed. SSc mice were produced by injecting bleomycin and treated with baicalein (25, 50, or 100 mg/kg). The antifibrotic features of baicalein and its mechanisms were investigated by histologic examination, hydroxyproline assay, enzyme-linked immunosorbent assay, western blotting and flow cytometry. RESULTS: Baicalein (5-120 µM) significantly inhibited the accumulation of the extracellular matrix and fibroblast activation in transforming growth factor (TGF)-ß1- and platelet derived growth factor (PDGF)-induced human dermal fibroblasts, as evidenced by abrogated deposition of total collagen, decreased secretion of soluble collagen, reduced collagen contraction capability and downregulation of various fibrogenesis molecules. In a bleomycin-induced model of dermal fibrosis in mice, baicalein (25-100 mg/kg) restored dermal architecture, ameliorated inflammatory infiltrates, and attenuated dermal thickness and collagen accumulation in a dose-dependent manner. According to flow cytometry, baicalein reduced the proportion of B cells (B220+ lymphocytes) and increased the proportion of memory B cells (B220+CD27+ lymphocytes) in the spleens of bleomycin-induced mice. Baicalein treatment potently attenuated serum levels of cytokines (interleukin (IL)-1ß, IL-2, IL-4, IL-6, IL-17A, tumor necrosis factor-α), chemokines (monocyte chemoattractant protein-1, macrophage inflammatory protein-1 beta) and autoantibodies (anti-scleroderma 70 (Scl-70), anti-polymyositis-scleroderma (PM-Scl), anti-centromeres, anti-double stranded DNA (dsDNA). In addition, baicalein treatment can significantly inhibit the activation of TGF-ß1 signaling in dermal fibroblasts and bleomycin-induce mice of SSc, evidenced by reducing the expression of TGF-ß1 and IL-11, as well as inhibiting both small mother against decapentaplegic homolog 3 (SMAD3) and extracellular signal-related kinase (ERK) activation. CONCLUSIONS: These findings suggest that baicalein has therapeutic potential against SSc, exerting modulating B-cell abnormalities, anti-inflammatory effects, and antifibrosis.


Assuntos
Linfócitos B , Flavanonas , Escleroderma Sistêmico , Animais , Humanos , Camundongos , Bleomicina/efeitos adversos , Colágeno/metabolismo , Fibrose , Inflamação , Escleroderma Sistêmico/tratamento farmacológico , Escleroderma Sistêmico/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Flavanonas/farmacologia , Linfócitos B/efeitos dos fármacos
10.
Scand J Immunol ; 97(2): e13241, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36519562

RESUMO

Der p 1 is one of the major allergenic molecules of Dermatophagoides pteronyssinus, causing house dust mite (HDM) allergy. The pathological B cells produce allergen-specific IgE antibodies that mediate the hypersensitivity reaction, therefore the selective elimination of these B cells is a legitimate therapeutic goal in allergy. Chimeric molecule Dp51-72 able to cross-link B cell inhibitory complement receptor type 1 and BCR on Der p 1-specific B cells was constructed. The signalling capabilities of this molecule have been tested on human B cells. A humanized mouse model of HDM allergy has been used to test the in vivo effects of the chimeric molecule administration. Administering the chimeric molecule to immunodeficient Rag2- γc- mice transferred with PBMCs from allergic patients resulted in reduction of allergen-specific IgE antibodies in the sera, and reduced infiltration of immune cells in lung histology preparations. Reduced numbers of human CD45+ and CD4+ cells in the lungs as well as inhibition of mast cell degranulation were also observed. The treatment with Dp51-72 chimera significantly decreased the local levels of anti-Dpt IgE antibodies in the bronchoalveolar lavage fluid (BALF). The binding of the chimeric molecule to tonsillar B cells triggers the tyrosine phosphorylation of 30-32 kDa protein, which is most likely involved in the inhibitory process. Administration of constructed chimeric molecules to humanized mice with developed inflammation resulted in specific suppression of disease-associated IgE antibody-producing cells and preserved lung histology. This effective approach could be further developed into a therapeutic agent for treatment of patients with HDM allergy.


Assuntos
Alergia a Ácaros , Hipersensibilidade , Receptores de Antígenos de Linfócitos B , Animais , Humanos , Camundongos , Alérgenos , Antígenos de Dermatophagoides , Modelos Animais de Doenças , Proteínas de Ligação a DNA , Alergia a Ácaros/metabolismo , Imunoglobulina E , Proteínas Nucleares , Linfócitos B/efeitos dos fármacos , Receptores de Antígenos de Linfócitos B/efeitos dos fármacos
11.
Am J Manag Care ; 28(16 Suppl): S323-S328, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36548523

RESUMO

Multiple sclerosis (MS) is a chronic, immune-mediated, neurodegenerative condition that results in progressive accumulation of disability over the course of the disease. MS presents heterogeneously, and, as the disease progresses, patients develop a range of physical and neurologic problems that include reduced mobility, cognitive impairment, weakness, fatigue, pain, and defects in speech or vision. Economically, MS is costly, including both direct costs stemming from clinical care and medications and the indirect costs of productivity losses. These costs pose a substantial burden to patients, families, caregivers, employers, and society. There are 21 approved disease-modifying therapies for MS across several drug classes. The importance of early MS treatment has been confirmed, and progress has been made in the treatment of relapsing-remitting MS, although this progress has not been replicated for progressive presentations of the disease. Ongoing research continues to elucidate the exact mechanisms of disease in MS as well as potential new treatment strategies that may better address current gaps, such as disability progression in secondary progressive MS without activity. One of the novel pathways under investigation is the inhibition of Bruton tyrosine kinase, a cytoplasmic tyrosine kinase, which is expressed in B cells and other potentially targetable hematopoietic lineage cells. This review examines emerging hypotheses that targeting both B cells and myeloid cells within the periphery and central nervous system could yield clinical effects in key areas of MS pathophysiology that are currently unaddressed.


Assuntos
Tirosina Quinase da Agamaglobulinemia , Esclerose Múltipla , Humanos , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Tirosina Quinase da Agamaglobulinemia/metabolismo , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/enzimologia , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/enzimologia , Redes e Vias Metabólicas , Linfócitos B/efeitos dos fármacos , Linfócitos B/enzimologia , Células Mieloides/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
12.
J Immunol Methods ; 511: 113385, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36372267

RESUMO

The advantage of the newer biological therapies is that the immunosuppressive effect is targeted, in contrast, to the standard, traditional immunomodulatory agents, which have a more global effect. However, there are unintended targets and consequences, even to these "precise" therapeutics, leading to acquired or secondary immunodeficiencies. Besides depleting specific cellular immune subsets, these biological agents, which include monoclonal antibodies against biologically relevant molecules, often have broader functional immune consequences, which become apparent over time. This review focuses on acquired B-cell immunodeficiency, secondary to the use of B-cell depleting therapeutic agents. Among the many adverse consequences of B-cell depletion is the risk of hypogammaglobulinemia, failure of B-cell recovery, impaired B-cell differentiation, and risk of infections. Factors, which modulate the outcomes of B-cell depleting therapies, include the intrinsic nature of the underlying disease, the concomitant use of other immunomodulatory agents, and the clinical status of the patient and other co-existing morbidities. This article seeks to explore the mechanism of action of B-cell depleting agents, the clinical utility and adverse effects of these therapies, and the relevance of systematic and serial laboratory immune monitoring in identifying patients at risk for developing immunological complications, and who may benefit from early intervention to mitigate the secondary consequences. Though these biological drugs are gaining widespread use, a harmonized approach to immune evaluation pre-and post-treatment has not yet gained traction across multiple clinical specialties, because of which, the true prevalence of these adverse events cannot be determined in the treated population, and a systematic and evidence-based dosing schedule cannot be developed. The aim of this review is to bring these issues into focus, and initiate a multi-specialty, data-driven approach to immune monitoring.


Assuntos
Linfócitos B , Terapia Biológica , Síndromes de Imunodeficiência , Agentes de Imunomodulação , Humanos , Síndromes de Imunodeficiência/tratamento farmacológico , Linfócitos B/efeitos dos fármacos
13.
Int J Cancer ; 151(5): 783-796, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35527719

RESUMO

B-cell receptor (BCR) signaling is central for the pathomechanism of chronic lymphocytic leukemia (CLL), and inhibitors of BCR signaling have substantially improved treatment options. To model malignant and nonmalignant BCR signaling, we quantified five components of BCR signaling (ZAP70/SYK, BTK, PLCγ2, AKT, ERK1/2) in single cells from primary human leukemic cells and from nonmalignant tissue. We measured signaling activity in a time-resolved manner after stimulation with BCR crosslinking by anti-IgM and/or anti-CD19 and with or without inhibition of phosphatases with H2 O2 . The phosphorylation of BCR signaling components was increased in malignant cells compared to nonmalignant cells and in IGHV unmutated CLL cells compared to IGHV mutated CLL cells. Intriguingly, inhibition of phosphatases with H2 O2 led to higher phosphorylation levels of BCR components in CLL cells with mutated IGHV compared to unmutated IGHV. We modeled the connectivity of the cascade components by correlating signal intensities across single cells. The network topology remained stable between malignant and nonmalignant cells. To additionally test for the impact of therapeutic compounds on the network topology, we challenged the BCR signaling cascade with inhibitors for BTK (ibrutinib), PI3K (idelalisib), LYN (dasatinib) and SYK (entospletinib). Idelalisib treatment resulted in similar effects in malignant and nonmalignant cells, whereas ibrutinib was mostly active on CLL cells. Idelalisib and ibrutinib had complementary effects on the BCR signaling cascade whose activity was further reduced upon dasatinib and entospletinib treatment. The characterization of the molecular circuitry of leukemic BCR signaling will allow a more refined targeting of this Achilles heel.


Assuntos
Linfócitos B , Leucemia Linfocítica Crônica de Células B , Inibidores de Proteínas Quinases , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linfócitos B/efeitos dos fármacos , Linfócitos B/patologia , Dasatinibe/farmacologia , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/patologia , Leucemia Linfocítica Crônica de Células B/fisiopatologia , Monoéster Fosfórico Hidrolases , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptores de Antígenos de Linfócitos B , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
14.
Acta Neuropathol ; 143(4): 505-521, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35303161

RESUMO

Inhibition of Bruton's Tyrosine Kinase (BTKi) is now viewed as a promising next-generation B-cell-targeting therapy for autoimmune diseases including multiple sclerosis (MS). Surprisingly little is known; however, about how BTKi influences MS disease-implicated functions of B cells. Here, we demonstrate that in addition to its expected impact on B-cell activation, BTKi attenuates B-cell:T-cell interactions via a novel mechanism involving modulation of B-cell metabolic pathways which, in turn, mediates an anti-inflammatory modulation of the B cells. In vitro, BTKi, as well as direct inhibition of B-cell mitochondrial respiration (but not glycolysis), limit the B-cell capacity to serve as APC to T cells. The role of metabolism in the regulation of human B-cell responses is confirmed when examining B cells of rare patients with mitochondrial respiratory chain mutations. We further demonstrate that both BTKi and metabolic modulation ex vivo can abrogate the aberrant activation and costimulatory molecule expression of B cells of untreated MS patients. Finally, as proof-of-principle in a Phase 1 study of healthy volunteers, we confirm that in vivo BTKi treatment reduces circulating B-cell mitochondrial respiration, diminishes their activation-induced expression of costimulatory molecules, and mediates an anti-inflammatory shift in the B-cell responses which is associated with an attenuation of T-cell pro-inflammatory responses. These data collectively elucidate a novel non-depleting mechanism by which BTKi mediates its effects on disease-implicated B-cell responses and reveals that modulating B-cell metabolism may be a viable therapeutic approach to target pro-inflammatory B cells.


Assuntos
Tirosina Quinase da Agamaglobulinemia , Linfócitos B , Esclerose Múltipla , Inibidores de Proteínas Quinases , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Comunicação Celular , Humanos , Esclerose Múltipla/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
15.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163112

RESUMO

Cenerimod is a potent, selective sphingosine 1-phosphate receptor 1 (S1P1) modulator currently investigated in a Phase IIb study in patients with systemic lupus erythematosus (SLE) (NCT03742037). S1P1 receptor modulators sequester circulating lymphocytes within lymph nodes, thereby reducing pathogenic autoimmune cells (including T and B lymphocytes) in the bloodstream and inflamed tissues, making them an effective therapeutic concept for autoimmune disorders. Although the effect of S1P receptor modulators in reducing circulating lymphocytes is well documented, the precise molecular role of the S1P1 receptor on these cell types is not fully understood. In this study, the mode of action of cenerimod on human primary lymphocytes in different activation states was investigated focusing on their chemotactic behavior towards S1P in real-time, concomitant to S1P1 receptor expression and internalization dynamics. Here, we show that cenerimod effectively prevents T and B cell migration in a concentration-dependent manner. Interestingly, while T cell activation led to strong S1P1 re-expression and enhanced migration; in B cells, an enhanced migration capacity and S1P1 receptor surface expression was observed in an unstimulated state. Importantly, concomitant treatment with glucocorticoids (GCs), a frequently used treatment for autoimmune disorders, had no impact on the inhibitory activity of cenerimod on lymphocytes.


Assuntos
Linfócitos B/fisiologia , Movimento Celular , Lisofosfolipídeos/metabolismo , Oxidiazóis/farmacologia , Propilenoglicóis/farmacologia , Receptores de Esfingosina-1-Fosfato/antagonistas & inibidores , Esfingosina/análogos & derivados , Linfócitos T/fisiologia , Linfócitos B/efeitos dos fármacos , Humanos , Transdução de Sinais , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Linfócitos T/efeitos dos fármacos
16.
Blood ; 139(19): 2983-2997, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35226736

RESUMO

Despite advances in the field, chronic graft-versus-host-disease (cGVHD) remains a leading cause of morbidity and mortality following allogenic hematopoietic stem cell transplant. Because treatment options remain limited, we tested efficacy of anticancer, chromatin-modifying enzyme inhibitors in a clinically relevant murine model of cGVHD with bronchiolitis obliterans (BO). We observed that the novel enhancer of zeste homolog 2 (EZH2) inhibitor JQ5 and the BET-bromodomain inhibitor JQ1 each improved pulmonary function; impaired the germinal center (GC) reaction, a prerequisite in cGVHD/BO pathogenesis; and JQ5 reduced EZH2-mediated H3K27me3 in donor T cells. Using conditional EZH2 knockout donor cells, we demonstrated that EZH2 is obligatory for the initiation of cGVHD/BO. In a sclerodermatous cGVHD model, JQ5 reduced the severity of cutaneous lesions. To determine how the 2 drugs could lead to the same physiological improvements while targeting unique epigenetic processes, we analyzed the transcriptomes of splenic GCB cells (GCBs) from transplanted mice treated with either drug. Multiple inflammatory and signaling pathways enriched in cGVHD/BO GCBs were reduced by each drug. GCBs from JQ5- but not JQ1-treated mice were enriched for proproliferative pathways also seen in GCBs from bone marrow-only transplanted mice, likely reflecting their underlying biology in the unperturbed state. In conjunction with in vivo data, these insights led us to conclude that epigenetic targeting of the GC is a viable clinical approach for the treatment of cGVHD, and that the EZH2 inhibitor JQ5 and the BET-bromodomain inhibitor JQ1 demonstrated clinical potential for EZH2i and BETi in patients with cGVHD/BO.


Assuntos
Bronquiolite Obliterante , Proteína Potenciadora do Homólogo 2 de Zeste , Centro Germinativo , Doença Enxerto-Hospedeiro , Proteínas , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/metabolismo , Linfócitos B/patologia , Bronquiolite Obliterante/genética , Bronquiolite Obliterante/metabolismo , Bronquiolite Obliterante/patologia , Doença Crônica , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Inibidores Enzimáticos/farmacologia , Centro Germinativo/efeitos dos fármacos , Centro Germinativo/patologia , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/patologia , Humanos , Camundongos , Proteínas/metabolismo , Transcriptoma
17.
Eur J Pharmacol ; 919: 174808, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35151645

RESUMO

Interferon-I (IFN-I) signaling pathway plays a vital role in the differentiation of germinal center B cells and the pathogenesis of systemic lupus erythematosus (SLE). Therefore, targeting the IFN-I signaling pathway could serve as an effective treatment strategy in SLE. Arctigenin is an active ingredient present in the seeds of Arctium lappa L. It has been reported to act as a negative regulator of inflammatory responses. However, the role of arctigenin remains unknown in the regulation process of the IFN-I-mediated differentiation of germinal center B cells and the pathogenesis of SLE. In the present study, we demonstrated that arctigenin alleviated the progression of spontaneous lupus in MRL/lpr mice and imiquimod-mediated lupus mice. Especially, arctigenin significantly reduced the proportions of germinal center B cells (7.1%, vs. 5.12%, p < 0.01), follicular helper T cells (11.49%, vs. 5.53%, p < 0.05), and plasma cells (2.44%, vs. 1.39%, p < 0.01) in the lupus-prone mice. In vitro studies have shown that arctigenin significantly inhibited the IFN-α-induced CD69 and interferon-stimulated gene (ISG) expressions along with the phosphorylation of JAK1 and STAT1 by nearly half in murine B cells via activating PP2A. Overall, these data highlighted the role of arctigenin in regulating the IFN-I-mediated differentiation of germinal center B cells and the pathogenesis of SLE. Thus, arctigenin may be used as a potentially effective therapeutic target for the treatment of SLE.


Assuntos
Furanos/farmacologia , Lignanas/farmacologia , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Animais , Linfócitos B/efeitos dos fármacos , Modelos Animais de Doenças , Furanos/uso terapêutico , Centro Germinativo/efeitos dos fármacos , Humanos , Interferons/metabolismo , Lignanas/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos
18.
J Hematol Oncol ; 15(1): 4, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35012608

RESUMO

BACKGROUND: There is an urgent need for highly efficacious antiviral therapies in immunosuppressed hosts who develop coronavirus disease (COVID-19), with special concern for those affected by hematological malignancies. CASE PRESENTATION: Here, we report the case of a 75-year-old male with chronic lymphocytic leukemia who was deficient in CD19+CD20+ B-lymphocyte populations due to previous treatment with anti-CD20 monoclonal antibodies. The patient presented with severe COVID-19 pneumonia due to prolonged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and was treated with two courses of the antiviral plitidepsin on a compassionate use basis. The patient subsequently achieved an undetectable viral load, and his pneumonia resolved. CONCLUSIONS: Treatment with plitidepsin was well-tolerated without any further hematological or cardiovascular toxicities. This case further supports plitidepsin as a potential antiviral drug in SARS-CoV-2 patients affected by immune deficiencies and hematological malignancies.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Linfócitos B/efeitos dos fármacos , COVID-19/prevenção & controle , Depsipeptídeos/uso terapêutico , Leucemia Linfocítica Crônica de Células B/complicações , Peptídeos Cíclicos/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Idoso , Anticorpos Monoclonais Humanizados/uso terapêutico , Antígenos CD20/imunologia , Linfócitos B/metabolismo , COVID-19/complicações , COVID-19/virologia , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Depleção Linfocítica/métodos , Masculino , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Resultado do Tratamento
19.
Nat Commun ; 13(1): 452, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35064115

RESUMO

CD11c+T-bet+ B cells are recognized as an important component of humoral immunity and autoimmunity. These cells can be distinguished from other B cells by their higher expression of the adenosine receptor 2a. Here we address whether A2A receptor activation can affect CD11c+T-bet+ B cells. We show that administration of the A2A receptor agonist CGS-21680 depletes established CD11c+T-bet+ B cells in ehrlichial-infected mice, in a B cell-intrinsic manner. Agonist treatment similarly depletes CD11c+T-bet+ B cells and CD138+ B cells and reduces anti-nuclear antibodies in lupus-prone mice. Agonist treatment is also associated with reduced kidney pathology and lymphadenopathy. Moreover, A2A receptor stimulation depletes pathogenic lymphocytes and ameliorates disease even after disease onset, highlighting the therapeutic potential of this treatment. This study suggests that targeting the adenosine signaling pathway may provide a method for the treatment of lupus and other autoimmune diseases mediated by T-bet+ B cells.


Assuntos
Autoimunidade , Linfócitos B/imunologia , Antígeno CD11c/metabolismo , Infecções/imunologia , Agonistas do Receptor Purinérgico P1/farmacologia , Receptor A2A de Adenosina/metabolismo , Proteínas com Domínio T/metabolismo , Animais , Autoimunidade/efeitos dos fármacos , Linfócitos B/efeitos dos fármacos , Modelos Animais de Doenças , Ehrlichia , Feminino , Infecções/patologia , Lúpus Eritematoso Sistêmico/sangue , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/patologia , Camundongos Endogâmicos C57BL
20.
Sci Rep ; 12(1): 251, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997046

RESUMO

Shigellosis is characterized as diarrheal disease that causes a high mortality rate especially in children, elderly and immunocompromised patients. More recently, the World Health Organization advised safe vaccine designing against shigellosis due to the emergence of Shigella dysenteriae resistant strains. Therefore, the aim of this study is to identify novel drug targets as well as the design of the potential vaccine candidates and chimeric vaccine models against Shigella dysenteriae. A computational based Reverse Vaccinology along with subtractive genomics analysis is one of the robust approaches used for the prioritization of drug targets and vaccine candidates through direct screening of genome sequence assemblies. Herein, a successfully designed peptide-based novel highly antigenic chimeric vaccine candidate against Shigella dysenteriae sd197 strain is proposed. The study resulted in six epitopes from outer membrane WP_000188255.1 (Fe (3+) dicitrate transport protein FecA) that ultimately leads to the construction of twelve vaccine models. Moreover, V9 construct was found to be highly immunogenic, non-toxic, non-allergenic, highly antigenic, and most stable in terms of molecular docking and simulation studies against six HLAs and TLRS/MD complex. So far, this protein and multiepitope have never been characterized as vaccine targets against Shigella dysenteriae. The current study proposed that V9 could be a significant vaccine candidate against shigellosis and to ascertain that further experiments may be applied by the scientific community focused on shigellosis.


Assuntos
Antibacterianos/farmacologia , Vacinas Bacterianas/farmacologia , Desenho de Fármacos , Disenteria Bacilar/prevenção & controle , Shigella dysenteriae/efeitos dos fármacos , Desenvolvimento de Vacinas/métodos , Vacinologia/métodos , Animais , Antígenos de Bactérias/imunologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos B/microbiologia , Proteínas de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Desenho Assistido por Computador , Disenteria Bacilar/imunologia , Disenteria Bacilar/metabolismo , Disenteria Bacilar/microbiologia , Epitopos , Interações Hospedeiro-Patógeno , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Farmacologia em Rede , Shigella dysenteriae/imunologia , Shigella dysenteriae/patogenicidade , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...